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Bearing dynamic characteristics have been a major unknown in the modelling and analysis
of large turbo-generators. An identi"cation algorithm for bearing dynamic characterization by
using unbalance response measurements is developed for multi-degree-of-freedom (m.d.o.f.)
#exible rotor-bearing systems. The algorithm identi"es the bearing dynamic parameters,
consisting of four e!ective sti!ness and four damping coe$cients for each bearing, utilizing
frequency domain synchronous unbalance response measurements from the accelerometers
attached to the bearing housings in the horizontal and vertical directions, for a minimum
two di!erent unbalance con"gurations. The procedure of identifying bearing dynamic
coe$cients by using the proposed algorithm is presented and demonstrated through
a numerical example. Adding noise to the simulated signal checks the robustness of the
algorithm against measurement noise. Combinations of regularization and the generalized
singular value decomposition (SVD) are used to tackle an ill-posed problem due to the
nearly circular orbit of the rotor at the bearings, as a special case for nearly isotropic
bearings. It is demonstrated that by measuring noisy bearing responses with the direction of
rotation of the rotor both in the clockwise and anticlockwise directions, the bearing
estimation problem for circular orbit becomes well-conditioned. The regularization
algorithm is tested for an experimental rotor-bearing rig. The response reproduction
capabilities are excellent even in the presence of measurement noise.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

In modern power plants, because of ever-increasing demand for high power and high
speed with uninterrupted and reliable operation, the accurate prediction of the dynamic
behaviour of such machinery has become increasingly important. The most crucial part of
such large turbo-generators is the machine elements that allow relative motion between the
rotating and the stationary machine elements, i.e., the bearings. Historically, the theoretical
estimates of the dynamic bearing characteristics have always been a source of error in
the prediction of dynamic behaviour of rotor-bearing systems. Consequently, accurate
parameter identi"cation is required to reduce the discrepancy between the measurements
and the predictions. In particular, physically meaningful experimental identi"cation of
bearing dynamic coe$cients is necessary because of the di$culty in accurate system
modelling and analysis [1].
Obtaining reliable estimates of the bearing static load in actual test conditions is quite

di$cult and this leads to inaccuracies in the well-established theoretical bearing models.
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Hence, the estimation of bearing dynamic parameters in actual test conditions is important
to rotor design. Mitchell et al. [2] obtained the sti!ness of an oil "lm bearing experimentally,
by application of static loads. Morton [3] devised the measurement procedure for
estimation of the dynamic characteristics of a large sleeve bearing by application of dynamic
loads (sinusoidal excitation at a frequency non-synchronous with the running frequency of
the sleeve) using vibrators, whilst Childs and Hale [4] devised a test apparatus and facility
to identify the rotordynamic coe$cients of high-speed hydrostatic bearings (with shakers to
provide sinusoidal excitation along two perpendicular directions). Nordmann and
Schollhorn [5] identi"ed the sti!ness and damping coe$cients of journal bearings whereas
Kraus et al. [6] identi"ed the coe$cients for rolling element bearings by means of the impact
method. Sahinkaya and Burrows [7] and Tieu and Qiu [8] estimated the linearized oil "lm
parameters from the out-of-balance response where the shaft was excited by a known
unbalance force (synchronous excitation). Chen and Lee [9] identi"ed rolling element
dynamic characteristics in #exible rotor-bearing systems by using unbalance responses at
all bearings and several shaft locations without a priori knowledge of the unbalance.
Muszynska and Bently [10] developed a perturbation technique (two frequency swept
periodic inputs) for estimation of these parameters. Tiwari and Vyas [11] extracted the
non-linear sti!ness parameters of rolling element bearings based on the natural random
response at the bearings of rotor-bearing systems. Goodwin [12] reviewed the experimental
approaches to rotor support impedance measurement. Swanson and Kirk [13] presented
a survey in tabular form of the experimental data available in the open literature for "xed
geometry hydrodynamic journal bearings.
Most of the bearing parameter identi"cation methods available require the bearing to be

tested in isolation or in a rotor-bearing system where the shaft is rigid. Very few researchers
have considered the #exibility of the shaft. The present method develops a bearing
parameter identi"cation algorithm for m.d.o.f. rotor-bearing systems treating the shaft as
#exible and has bearings with speed-dependent parameters. From the dynamic sti!ness
equation of a rotor-bearing system a general algorithm is derived to extract bearing
parameters. From a minimum of two run-downs with di!erent unbalance con"gurations,
speed-dependent bearing dynamic parameters are identi"ed. A numerical simulation
illustrates the algorithm and checks the robustness against measurement noise. For
nearly isotropic bearings when the shaft orbit becomes nearly circular at the bearings,
combinations of regularization and the generalized SVD techniques are used to solve an
ill-posed problem. For circular orbits, it is demonstrated that by measuring noisy bearing
responses with the direction of rotation of the rotor both in the clockwise and anticlockwise
directions, the bearing estimation problem becomes well-conditioned. The present
regularization algorithm is tested using an experimental rotor-bearing rig.

2. THEORY

Figure 1 shows a #exible rotor supported on #exible bearings with rigid foundations. The
dynamic sti!ness equation in the frequency domain for the m.d.o.f. rotor-bearing system is
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whereD is the dynamic sti!ness, f
�
is the unbalance force, the "rst subscript,R or B, refers to

the rotor and bearing, respectively, and the second subscript, i or b, corresponds to the
internal and connection degrees of freedom (d.o.f.s) respectively. The d.o.f.s of the rotor at
the bearing locations are called connection d.o.f.s, z

���
, and the d.o.f.s of the rotor other
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Figure 1. Schematic diagram of the #exible rotor-bearings system.
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than at the bearing locations are called internal d.o.f.s, z
���
. Appendix B gives a list of

nomenclature. It is assumed here that balance planes (unbalances) are present only at the
rotor internal d.o.f. Equation (1) may be expanded as
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Equation (2) may be rearranged to give the rotor internal d.o.f. response as
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Equation (4) may be used to give the rotor internal d.o.f. response for known unbalance,
rotor model and bearing connection d.o.f. response. Equation (3) may be rearranged as
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Equation (5) may be represented as
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In equation (6), K
�
, C

�
and M

�
represent bearing sti!ness, damping and mass matrices,

respectively, � represents the rotor speed and j"�!1. Separating the real and imaginary
parts of equation (6) yields
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where superscripts r and i represent the real and imaginary parts respectively. Note that the
K

�
, C

�
and M

�
matrices are block diagonal, which means that the identi"cation may be

performed on a per bearing basis. Equations (8) and (9) may be combined, for each bearing,
to give
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and
j"1, 2,2, n

�
. (15)

k and c represent the bearing e!ective sti!ness and damping coe$cients, respectively, x
�
and

y
�
represent the jth bearing responses in the horizontal and vertical directions, respectively,

and n
�
represents total number of bearings in the rotor-bearing system. In equation (14)

sti!ness and mass terms are combined during estimation. The estimation of sti!ness and
mass terms separately would lead the regression matrix, B (see equation (17)) to be singular.
The combined sti!ness and mass term, (k!��m), is referred to as the speed-dependent
e+ective sti+ness, k. Equation (10) may be written for the jth bearing at a particular speed
�

�
and for the nth unbalance con"guration run-down as
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which can be combined for di!erent unbalance con"guration run-downs (saym) at the same
speed to yield
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Equation (17) may be used to obtain speed-dependent bearing parameters using the
ordinary least-squares estimation technique in conjunction with the regularization techniques
described below. A minimum of two run-down responses with di!erent unbalance
con"gurations (both at the bearing locations and the rotor internal d.o.f. locations) are
required for the identi"cation of bearing parameters for any number of bearings. If the rotor
internal d.o.f. can be measured then the estimates of rotor unbalance will not be required in
the estimation algorithm. This may be suitable for a laboratory type rotor-bearing set-up
but requires signi"cant measurement sensors and related signal conditioning hardware. If
the rotor internal d.o.f.s are not accessible, as in most turbo-generator sets, then equation (4)
may be used to obtain responses at rotor internal d.o.f. from measured bearing location
responses in conjunction with known unbalances for the di!erent unbalance con"gurations.
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For this a minimum of three run-down responses are required (it is assumed here that the
rotor-bearing system will always have some unknown residual unbalance); one run-down
without trial mass (but with unknown residual unbalance) and two run-downs with trial
masses (known additional unbalance).

3. REGULARIZATION

The condition of the matrices to be inverted in equation (17) should be taken into account,
and the condition number (ratio of the maximum singular value to the minimum singular
value) may be improved by pre-conditioning or by scaling parameters. Column scaling is
necessary because of the di!erent magnitudes of the elements of the (K

�
!��

�
M

�
) and

C
�
matrices, and the scaling factors used are 1 and �

�
, respectively, where �

�
represents the

rotor speed at which bearing parameters are estimated. Row scaling is not required here
since the identi"cation is performed at a particular speed, so the magnitude of the forces do
not change much, as the chosen unbalances vary little in practice. It is observed that
equation (17) is an ill-posed problem when the orbit of the rotor at bearings is circular or
nearly circular (see Appendix A for a detailed explanation). Circular orbits of symmetrical
rotors are expected for isotropic bearings. The test rig used for validation of the present
algorithm has nearly isotropic bearings and has nearly circular orbits for a wide range of
rotor speeds. For elliptical orbits, i.e., for anisotropic bearings, equation (17) is usually
well-conditioned.
The Tikhonov and Arsenin [14] regularization technique was used to solve the ill-posed

equations. The discrete ¹ikhonov-regularization problem equivalent to equation (17) is the
least-squares problem

��"min��B�!q��#���L���� , (19)

where �)� represents the matrix 2-norm, � is the regularization parameter and ¸ is the
regularization matrix. Typical forms of the regularization matrix are the identity matrix or
a well-conditioned discrete approximation to some derivative operator. The regularization
parameter and matrix control the smoothness of the solution. The most convenient
graphical tool for the selection of the regularization parameter, �, for the analysis of
ill-posed problems is the so-called ¸-curve which is a plot (for all valid regularization
parameters) of the 2-norm �L�� of the regularized solution versus the corresponding
residual 2-norm �B�!q�. This plot has a characteristic ¸-shaped appearance with a
distinct corner separating the vertical and horizontal parts of the curve. In this way, the
L-curve clearly displays the compromise between minimization of these two quantities, which
is the heart of any regularization method. The regularization parameter corresponding to
the corner of the L-curve corresponds to the optimum regularization parameter. The
regularized solution is obtained by using the generalized SVD of the matrix pair (B, L).
For nearly isotropic bearings, where the orbits become nearly circular and equation (17)

is an ill-posed problem, regularization may be performed by minimizing the square of
the di!erence between the bearing parameters in the horizontal and vertical directions.
A regularization parameter and matrix of the following form may be used:
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Figure 2. Schematic diagram of the test rig rotor-bearings-coupling model.
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where �
�
and �


are the regularization parameters for the sti!ness and damping parameters

respectively. This regularizationminimizes the di!erence in the direct and cross sti!ness and
damping terms. Section 5 illustrates regularization for nearly isotropic bearing in a more
detail.

4. EXPERIMENTAL ROTOR-BEARING RIG

An experimental rotor-bearing rig at the University of Wales Swansea is used to validate
the proposed algorithm for the identi"cation of speed-dependent bearing parameters.
Figure 2 shows a schematic diagram of the test rig. A simple #exible rotor was supported on
two #exible bearings with a rigid foundation. The #exible bearings consist of e!ectively
rigid rolling element bearings with the outer race attached to a relatively light bearing
housing and that is, in turn, supported on #exible springs attached to a rigid foundation.
Accelerometers were mounted at each bearing housing measuring the horizontal and
vertical direction responses of the bearings (i.e., the responses at the connection d.o.f.s
between the shaft and the rigid foundation). A variable speed motor drives the rotor
through a #exible coupling. Two rigid discs were mounted on the rotor at distances of 79
and 459 mm, respectively, measured from the coupling, whilst bearings 1 and 2 were at
distances of 234 and 733 mm. 1 and 2 refer to the drive-side and free-end of the rotor
respectively. The rotor was a steel shaft 750 mm long and 12 mm nominal diameter. The
steel discs had an internal diameter of 12 m m, an outside diameter of 74 mm and 15 mm
thickness. There were 16 equally spaced threaded holes in each disc at a radius of 30 mm, to
allow for the addition of balance weights. The identi"cationmethod detailed above requires
frequency-basedmeasurements of the rotor response at the bearing housing, over a controlled
run-up or run-down of the machine. The objective of the measurement system was therefore
to return a "rst order response, as only the synchronous response was required. A detailed
description of the test rig and associated measurement and conditioning hardware can be
found in reference [15].

5. SIMULATED EXAMPLE

The test rig discussed above was used for a simulated example. A "nite element model of
the rotor was created using 5 two-noded Timoshenko beam elements with gyroscopic
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e!ects included, each with two translational and two rotational degrees of freedom (see
Figure 2). The coupling was modelled as a simple direct-sti!ness spring support whilst each
of the bearings was modelled using 12 linear coe$cients of mass, sti!ness and damping. The
dimensions of the rotor at each station are given in Table 1. The dynamic sti!ness in
equation (1) was simulated in the frequency interval of 10}60 Hz to get "rst order responses
(run-downs or run-ups) corresponding to di!erent unbalance con"gurations (see Table 2)
for the assumed coupling and bearings parameters as given in Table 3. The coupling and
bearing parameters have realistic values, similar to the actual test rig [15], although the
damping parameters were chosen to give a small positive damping.
TABLE 3

Details of coupling and bearing parameters assumed for the simulated example

Parameters Coupling Bearing 1 Bearing 2

Mass
(kg)

m
��
m

�	

0)066
0)000

0)447
0.039

0)370
!0)013

m
		

m
	�

0)066
0)000

0)459
0)039

0)364
!0)013

Sti!ness
(N/m)

k
��
k
�	

9000
0

16 788
1000

17 070
!396

k
		
k
	�

9000
0

18 592
1000

16 920
!396

Damping
(N s/m)

c
��
c
�	

0
0

6)00
0)00

3)00
0)00

c
		
c
	�

0
0

6)00
0)00

3)00
0)00

TABLE 2

Di+erent unbalance con,gurations used for the simulated example

Con"guration Disc 1 Disc 2

Mass
(kg)

Radius
(mm)

Phase
(deg)

Mass
(kg)

Radius
(mm)

Phase
(deg)

I 0)001 30 0 0)003 30 60
II 0)003 30 0 0)001 30 60

TABLE 1

Details of the rotor model for the simulated and experimental examples

Station Distance from coupling (mm) Element length (mm)

1. (coupling) 0 *

2. (disk 1) 79 79
3. (bearing 1) 234 155
4. (disk 2) 459 225
5. (shaft intermediate point) 596 137
6. (bearing 2) 733 137
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The simulated responses corresponding to unbalance con"gurations I and II were
substituted into equation (17) to estimate the speed-dependent bearing parameters. Initially,
the ordinary least-squares method was used and the bearing parameters were accurately
estimated. For simulation the assumed damping cross-coupled terms, as given in Table 3,
were chosen to be zero, whilst the estimated damping cross-coupled terms were less than
10��. The estimated bearing parameters were used to estimate the response from equation
(1) in conjunction with the unbalance con"guration information. As expected the amplitude
and phase responses for the simulated and estimated cases matched very closely.
In order to check the robustness of the present algorithm the bearing responses were

contaminated with noise during estimation. When the least-squares method was used to
solve equation (17), Figures 3 and 4 show the assumed and estimated bearing parameters
with respect to rotor speed for bearing 2, when 1% random noise was added to the
simulated bearing responses. Large errors in the estimated parameters were found in some
of the speed ranges as compared to the chosen parameters. In order to ascertain the cause of
these parameter errors, a plot of the variation in the bearing response amplitude ratio in the
horizontal and vertical directions is shown in Figure 5 for both the bearings 1 and 2. It
clearly shows that in most of the speed range the orbit is nearly circular (amplitude ratio is
nearly equal to unity). Thus, in most of the speed range the estimation equations were
ill-conditioned (see Appendix A) except near the resonances where the orbits were elliptical.
To check the robustness of the present algorithm against noise for elliptical orbits, the
simulation was repeated for changed bearing parameters (i.e., taking k

		
"2k

��
for both

the bearings), when 1% random noise was added to the simulated bearing responses.
Figures 6 and 7 show the corresponding assumed and estimated bearing parameters with
non-regularized ordinary least squares for bearing 2. The reasonably good agreement
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Figure 3. Comparison of the assumed and estimated (non-regularized) e!ective sepsfness parameters of bearing
2 with noise in the simulated bearing response.
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Figure 4. Comparison of the assumed and estimated (non-regularized) damping parameters of bearing 2 with
noise in the simulated bearing response.
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Figure 6. Comparison of the assumed and estimated (non-regularized) e!ective sepsfness parameters of bearing
2 with noise in the simulated bearing response for k
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Figure 8. Comparison of the assumed and estimated (regularized as isotropic bearing) e!ective sepsfness
parameters of bearing 2 with noise in the simulated bearing response.
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suggests the robustness of present algorithm against noise for elliptical orbits. Since the
present algorithm was found to be well-conditioned for the elliptical orbits, it was
decided that regularization should only be used when required. In all of the examples, the
measurement noise has caused the estimates of the damping cross terms to become
non-zero. However, the cross terms are generally smaller in magnitude than the direct
terms, and in any case the damping in the system is very small.
Since the present example has nearly isotropic bearings and in most of the range the

orbits are nearly circular, regularization was used for isotropic bearings as discussed in
section 3. To demonstrate the method perfectly isotropic bearings were considered. Figures 8
and 9 show the corresponding assumed and estimated bearing parameter variation
for bearing 2, for perfectly isotropic bearings, with respect to the rotor speed. For
regularization, the regularization parameters (�

�
and �


) were set to 10��. Excellent

agreement has been found between the simulated and estimated bearing parameters, even in
the presence of noise in the simulated bearing responses, and this demonstrates the
robustness of the present method against noise. When more unbalance con"gurations
were used for the bearing parameter estimation, the accuracy of the estimated bearing
parameters improves, especially in the presence of noise in simulated response. For
experimental data where the presence of noise is unavoidable, estimating bearing
parameters by using more than two run-down responses would lead to improved estimates.
The method for the case when measurements are taken by rotating the rotor both in

the clockwise and anticlockwise directions is discussed in Appendix A. To demonstrate
the approach responses were generated and contaminated with noise. For unbalance
con"guration II the direction of rotation of the shaft was clockwise and for unbalance
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Figure 9. Comparison of the assumed and estimated (regularized as isotropic bearing) damping parameters of
bearing 2 with noise in the simulated bearing response.
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Figure 10. Comparison of the assumed and estimated (when unbalance runs have di!erent directions of
rotation) e!ective sepsfness parameters of bearing 2 with noise in the simulated bearing response.
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Figure 11. Comparison of the assumed and estimated (when unbalance runs have di!erent directions of
rotation) damping parameters of bearing 2 with noise in the simulated bearing response.
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con"guration I it was anticlockwise. The bearing parameters were estimated using the
non-regularized ordinary least-squares method. A substantial reduction in the condition
number of the regression matrix was found, and the maximum reduction was of the order of
10�. Figures 10 and 11 show the corresponding assumed and estimated bearing parameter
variation of bearing 2, for perfectly isotropic bearings, with respect to rotor speed. The
estimated parameters show excellent agreement with the simulated bearing parameters and,
even in the presence of noise in the simulated bearing responses, and this demonstrates the
robustness of the method against noise.

6. EXPERIMENTAL RESULTS

The identi"cation method was tested on experimental data from a test rig at the University
of Wales Swansea. The "nite element model of the rotor was identical to that discussed in
the previous section. Since the main objective of the present work is to identify bearing
parameters, the rotor and coupling parameters were taken as those given in Tables 1 and 3.
The machine was run-down for di!erent unbalance con"gurations from 44 to 15 Hz. The
"rst order responses (displacements) in the horizontal and vertical directions at the bearing
housings were extracted. The present algorithm requires responses measured at the same
speeds for di!erent runs and these were obtained from the experimental data for di!erent
runs by linear interpolation. However, modern order tracking analyser systems are able to
measure data at any desired speed step and so eliminate this approximation. A speed step of
0)25 Hz was used for the interpolation of experimental bearing responses. Three runs were



TABLE 4

Di+erent unbalance con,gurations used in the experimental example

Con"guration Disc 1 Disc 2

Mass
(kg)

Radius
(mm)

Phase
(deg)

Mass
(kg)

Radius
(mm)

Phase
(deg)

I (residual unbalance) * * * * * *

II 0)002 30 78)75 0)002 30 348)75

III 0)00123 30 101)25 0)0018 30 11)25
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Figure 12. Experimental bearing response amplitude ratio in the horizontal and vertical directions, at bearing
1 and 2.
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performed, the "rst with residual unbalance and the second and third cases with the
addition of di!erent unbalance con"gurations (see Table 4). Since the residual unbalance
was unknown, the response for run 1 was subtracted for that of run 2 and run 3. Assuming
the system is linear then the resulting responses will correspond to those arising from the
added unbalances. The resulting bearing responses were used in equation (4) to obtain
responses at the rotor internal d.o.f.s. The resulting responses and corresponding additional
unbalance information were substituted into equation (17) to calculate the speed-dependent
bearing parameters.
A plot of the variation of the bearing response amplitude ratio in the horizontal and

vertical directions is shown in Figure 12, for both bearings 1 and 2. Figure 12 clearly shows
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Figure 13. Estimated e!ective sepsfness parameters from the experimental responses for bearing 2 (regularized
as isotropic bearing).
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Figure 14. Estimated damping parameters from the experimental responses for bearing 2 (regularized as
isotropic bearing).
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Figure 15. Experimental and estimated amplitude and phase responses (horizontal direction), at bearing 2, for
unbalance con"guration II.
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that in most of the speed range the orbit is nearly circular (the amplitude ratio is nearly
equal to unity with rapid #uctuations) except near the resonances. For regularization,
a second order derivative operator (as discussed in section 3) along with a regularization
parameter value of 10��was used, and was selected based on a trade-o! between smoothing
of the estimated parameters and response reproduction capabilities. Figures 13 and 14 show
the variation of the estimated bearing e!ective sti!ness and damping parameters (regularized
as an isotropic bearing) with respect to the rotor speed. The estimated bearing parameters
were used to obtain the estimated response by using equation (1) in conjunction with the
unbalance information. Figures 15 and 16 show the comparison of the experimental and
estimated bearing amplitude and phase variation for bearing 2 with respect to the rotor
speed for unbalance con"guration II, in the horizontal and vertical directions. Excellent
reproduction of the responses shows the robustness of the present algorithm for the
experimental data. Throughout the estimation bearing 2 was considered since it was
expected to be a more representative check of the present algorithm since it was further
from the coupling.
Using the present algorithm bearing parameters were estimated. The response reproduction

capability of the estimated model was found to be excellent with responses from only three
run-downs, i.e., one with residual unbalance and another two with known unbalances. For
large rotating machines where measurement noise is expected to be higher, it is suggested
that more unbalance con"gurations could be incorporated into the estimation.

7. CONCLUSIONS

An identi"cation algorithm for the estimation of bearing speed-dependent dynamic
parameters of #exible rotor-bearing systems has been presented. The estimation uses
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Figure 16. Experimental and estimated amplitude and phase responses (vertical direction), at bearing 2, for
unbalance con"guration II.
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measured vibration data at the bearing housing from a minimum of two run-downs or
run-ups of the machine in conjunction with the knowledge of the corresponding unbalance.
Themethod is fully tested on simulated and experimental data from a two-bearingmachine.
For anisotropic bearings (elliptical orbits) the method is found to be robust to measurement
noise. Bearing parameter estimation for nearly isotropic bearings (i.e., nearly circular
orbits), which is an ill-posed problem, is successfully obtained using a combination of
regularization and generalized SVD techniques. It is suggested that the ill-posed problem
due to a circular orbit may be made well-conditioned by taking measurements with the
rotor rotating in both the clockwise and anticlockwise directions. Bearing parameters are
estimated and the response reproduction capabilities are very encouraging and it is
envisaged that the main thrust of the future work should be the application of the
identi"cation to large machines with #uid-"lm bearings (i.e., turbo-generators). In the case
of #uid-"lm bearings it would not be possible to run the system in the opposite direction of
rotation since this would cause the bearing parameters to change. However, the #uid-"lm
bearings dynamic characteristics are anisotropic in nature and the present algorithm works
well for the anisotropic bearings. It would also be interesting to investigate the e!ects of
foundation #exibility and shaft misalignment on the parameters estimates, and eventually
the overall response.
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APPENDIX A: CONDITIONING OF BEARING ESTIMATION

Consider equation (6) for a single bearing and use a complex sti!ness at a single
frequency. Let
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The solution is obtained as
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and hence, equation (A4) is ill-conditioned for circular orbits.
Having a third unbalance run does not help. For three unbalances equation (A2) may be

written as
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The least-squares solution involves the following inversion:
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and the circular orbits are still ill-conditioned.
There is another possibility when ill-conditioning may occur, namely when y

�
"�x

�
and
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�
for any value of �, where � is a constant. Then the denominator of equation (A4)

becomes zero, leading to ill-conditioning. This means that a change in orbit from one
unbalance to the next is required.
The ill-conditioning due to a circular orbit may be avoided by taking measurements in

both the clockwise and anticlockwise directions of rotation of the rotor. For this case
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and hence, equation (A4) becomes well-conditioned.

APPENDIX B: NOMENCLATURE

B regression matrix
D dynamic sti!ness, (k!m��#j�c)
f
�

unbalance force
j �!1
K, C, M sti!ness, damping and mass matrices
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L regularization matrix
m number of unbalance con"guration run-downs
n
�

total number of bearings in the rotor-bearing system
x, y bearing responses in the horizontal and vertical directions respectively
z d.o.f.s of the rotor, containing linear and angular displacements
z
���

d.o.f.s of the rotor at the bearing locations
z
���

d.o.f.s of the rotor other than at the bearing locations
� regularization parameter
� rotor running speed

Subscripts

b rotor connection d.o.f.s
B bearing
i rotor internal d.o.f.s
R rotor

Superscripts

i imaginary part
r real part
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